26 research outputs found

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland. II. Some chemical properties

    No full text
    Impact of some chemical soil properties (OC and Nt content as well as C:N ratio in humus horizon; exchangeable cation stocks and base saturation) on site index class of Scots pine (Pinus sylvestris L.) was analyzed. The study was conducted in 67 plots, separately on sandy soils of different moisture – non−gleyic (51 plots) and gleyic soils (16). For every soil pit, stocks of particular cations were calculated to the five depths: 25, 50, 100, 150 and 200 cm. The distinct positive impact of N, K and Mg on the pine site index was stated. The strong influence of K was assumed to be caused by the strong effect of potassium on water economy of trees. The positive relation between Ca soil stocks and pine growth was also stated, however, the relation was described to be an indirect one. Probably it reflected the stated clear intercorrelation of Ca with K and Mg content. The only element that was determined as negative correlated to the site index was Na, that was especially distinct when topsoil Na stocks were concerned. The negative correlation was presumed to reflect sodium adverse effect on soil structure, that resulted in decreasing water sorption in topsoil and thus caused less favourable site moisture conditions for pine growth. The results showed that when refer to the soil depth, the strength of the correlation between stocks of particular cations and the pine site index was strictly dependent on soil moisture: on non−gleyic soils, on the contrary to gleyic, the correlation strength was directly proportional to soil thickness taking into consideration in statistical analysis

    Site index of Scots pine stands in south-western Poland in relation to forest site types and soil units

    No full text
    Forming of site index class of Scots pine (Pinus sylvestris L.) stands in relation to forest site types (including their moisture variants) and soil units (type/subtype and also – in minor extent – geological genesis of soil parent material) was investigated. The research was conducted in the Bolesławiec, Głogów and Oława forest districts (SW Poland) in 348 Scots pine stands. The values of the pine site index got higher with increasing fertility of soil units and better forest site type, but only when plots of sandy soils where concerned. Site index was found to differ significantly between fresh than moisture forest sites and soil units. The study results demonstrated that on fresh soils of sandy texture site index of Scots pine was distinctly related even to minor differences of site properties that concerned both its moisture and fertility. Scots pine, by height growth, does not fully utilize the great nutrient retention of fine textured soils that concerned both fresh and moisture pedons. Fine textured soils should be designed for eutrophic broadleaved tree species planting only, which would enable to fully utilize the trophic potential of such soils. The relation between the site index and geological genesis of sand forming parent material of soils was found. The differences in pine growth on sands of other genesis were assumed to be a result of different sorting and mineral composition of these materials

    Impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland. I. pH, content of CaCO3, and properties concerning soil depth

    No full text
    The research was conducted in 268 Scots pine (Pinus sylvestris L.) stands, separately on soils of different moisture – non−gleyic (215 plots) and gleyic (53). The site index (B) of every Scots pine stand was determine as mean height of the ten thickest trees per 0.1 hectare, recalculated for the base−age of 100 years. The results show clearly negative relationship between the pine site index and pH values, that is probably caused by positive impact of soil acidity on (i) mycorrhiza symbiosis and (ii) nutrients releasing from minerals in weathering processes. The optimum soil pH for Scots pine site index was defined as regarding ca. 4.5 pHH2O and 4.0 pHKCl. There was not stated any impact of CaCO3 content in soil parent material on pine growth. The soil depth was positively related to the site index only when non−gleyic soils were concerned. On gleyic soils any relation between soil depth and pine growth was found. The results showed that in different soil moisture conditions, properties of opposite soil zones play the key role for the pine growth. When pine was planted on non−gleyic soils, the site index was much more related to properties of deeper horizons and parent material than of topsoil, while on gleyic soils the site index was correlated to properties of surface soil layer mainly

    Differences in early dynamics and effects of slope aspect between naturally regenerated and planted Pinus sylvestris woodland on inland dunes in Poland

    No full text
    There is little knowledge of the effects of landform relief on early growth dynamics and competitive interactions of Pinus sylvestris (Scots pine) stands on inland dunes, which could potentially be substantial. The goal of this study was to examine and compare early dynamics (based on growth parameters and properties of the understorey vegetation) and the effects of slope aspect in naturally regenerated and pine-planted woodland on inland dunes in northern Poland. Growth parameters, tree density, and understorey vegetation were monitored on north- and south-facing slopes in a 26.3 ha post-fire area with natural secondary succession and eight even-aged pine-planted stands, 5-34 years old. Clear differences were detected between the woodland types, in both growth parameters of pines with similar ages and effects of slope aspect on the pines. In the natural regeneration area north-facing slopes provided favorable conditions for natural encroachment by pines. Tree density was higher, and the pines were taller and thicker, on north-facing than on south-facing slopes. In contrast, in the pine-planted area pines were larger on south-facing slopes, although growth conditions were less favorable than on north-facing slopes. However, in the pine-planted area the north-facing slopes had significantly higher herb cover, dominated by Deschampsia flexuosa, indicating that even the presence of a relatively low grass species can impede early growth of Scots pine. The understorey species composition differed in the natural regeneration area, being dominated by Calluna vulgaris on north-facing slopes and Corynephorus canescens on south-facing slopes. The results reveal that interactions between landform, natural dynamics, planting practices, and competitive interactions in woodlands on inland dunes are complex, and should be considered in efforts to manage them efficiently
    corecore